エルミート多項式

出典: 謎の百科事典もどき『エンペディア(Enpedia)』
ナビゲーションに移動 検索に移動

エルミート多項式とは、常微分方程式 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \left(\frac{d^2}{dx^2} -2x\frac{d}{dx} +2n \right) H_{n}(x)=0} を満たす多項式構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{n}(x)} のこと。

概要[編集]

量子力学の分野で登場し、波動関数の一部となる。 微分方程式スツルム=リウヴィル型微分方程式の1つであり、 ロドリーグの公式(ロドリゲスの公式)によって直交多項式系

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{n}(x)=(-1)^n e^{x^2} \frac{d^n}{d^nx} e^{-x^2}}

を与えられる。
微分を含まないように表すと、総和床関数階乗指数などを用いて、

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{n}(x)=n! \sum_{m=0}^{\lfloor n/2\rfloor}{\frac {(-1)^{m}}{m!(n-2m)!}}(2x)^{n-2m}}

である。
添え字が偶数のときは偶関数奇数の時は奇関数になる。

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{n}(-x)=(-1)^nH_{n}(x)}

である。

漸化式[編集]

漸化式

  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{n+1}(x)=2xH_{n}(x)-2nH_{n-1}(x)}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{d}{dx} H_{n}(x)=2nH_{n-1}(x)}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{d}{dx} H_{n}(x)=2xH_{n}(x)-H_{n+1}(x)}

を満たす。

一覧[編集]

n=0~5までを示す。

  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{0}(x)=1}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{1}(x)=2x}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{2}(x)=4x^2-2}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{3}(x)=8x^3-12x}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{4}(x)=16x^4-48x^2+12}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle H_{5}(x)=32x^5-160x^3+120x}

関連項目[編集]