行列値関数

出典: 謎の百科事典もどき『エンペディア(Enpedia)』
ナビゲーションに移動 検索に移動

行列値関数とは行列を変数に持つ特殊関数の総称である。

概要[編集]

n次正方行列Aと複素数上の関数fに対して、

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(z)=\sum_{n=0}^{\infin}c_{n}z^n}

ならば、

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(A)=\sum_{n=0}^{\infin}c_{n}A^n}

と定義するのが自然である。ただし、構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A^0=E} (Eは単位行列)。 なお、一般に行列のn乗を計算するには対角化などがいる。
fがテイラー展開などのベキ級数表示を持たない場合は、別の方策が必要である。

[編集]

行列指数関数[編集]

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^A=\sum_{n=0}^{\infin}\frac{1}{n!}A^n}

n次正方行列X,Y、複素数a,b、n次の単位行列と零行列E,Oに対して以下の性質をもつ。

  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^O=E} (0乗)
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^{aX}e^{bX}=e^{(a+b)X}} (指数法則的)
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^Xe^{-X}=E} (指数法則的)
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle XY=YX} のとき構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^Xe^Y=e^Ye^X=e^{X+Y}} (指数法則的)
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y}正則行列のとき構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^{YXY^{-1}}=Ye^XY^{-1}}
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^{(X^T)}=(e^X)^T} (転置と交換可)
    • よって、構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X}対称行列のとき構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^X} も対称行列であり、Xが交代行列のとき構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^X}直行行列である。
  • 構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^{(X^*)}=(e^X)^*} (エルミートと交換可)
    • よって、構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X}エルミート行列のとき構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^X} もエルミート行列であり、Xが歪エルミート行列のとき構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle e^X}ユニタリ行列である。

また、行列微分方程式の解に出現する。

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{d}{dx}y(x)=Ay(x),y(0)=y_{0}}

の解は、

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle y(x)=e^{At}y_{0}}

行列の三角関数[編集]

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \cos(A)=\sum_{n=0}^{\infin}\frac{(-1)^n}{(2n)!}A^{2n}}
構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \sin(A)=\sum_{n=0}^{\infin}\frac{(-1)^n}{(2n+1)!}A^{2n+1}}

行列の対数関数[編集]

行列指数関数の逆関数的に定義される。つまり、

構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle B=\log(A) \left(A=e^B=\sum_{n=0}^{\infin}\frac{1}{n!}B^n \right)}

与えられた行列が対数を持つための必要十分条件は、それが正則行列であること。
複素数の場合と同様に、行列の対数はしばしば一意ではない。

行列の平方根[編集]

行列のの逆関数的に定義される。つまり、 行列の積に関して構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle B^2}構文解析に失敗 (SVG(ブラウザのプラグインで MathML を有効にすることができます): サーバー「https://ja.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A} に等しいときに、BをAの行列の平方根という。
行列の対数関数と同様に、行列の平方根はしばしば一意ではない。