ここでは1に収束(広義)する級数を結果のみ只だ只管列挙する。
∑n=0∞−2=−2−2−2−2−2−⋯=1
∑n=0∞(−1)n2=2−2+2−2+2−⋯=1
∑n=0∞−2n=−1−2−4−8−16−⋯=1
∑n=0∞2−n−1=12+14+18+116+132+⋯=1
∑n=0∞(−2)−n−13=32−34+38−316+332−⋯=1
∑n=0∞(−2)n3=3−6+12−24+48−⋯=1
∑n=0∞2−2n−23=34+316+364+3256+31024+⋯=1
∑n=0∞−22n3=3+12+48+192+768+⋯=1
∑n=0∞−n2−2n−25=54−516+564−5256+51024−⋯=1
∑n=0∞−n22n5=5−20+80−320+1280−⋯=1
∑n=0∞−12n=0−12−24−36−48−⋯=1
∑n=0∞−(−1)n4n=0+4−8+12−16+⋯=1
∑n=1∞(−1)n+1nln2=1ln2−12ln2+13ln2−14ln2+15ln2−⋯=1
∑n=0∞4π(−1)n2n+1=4π−43π+45π−47π+49π−⋯=1
∑n=0∞2ee2−11(2n+1)!=2ee2−1+2e3!(e2−1)+2e5!(e2−1)+2e7!(e2−1)+2e9!(e2−1)+⋯=1
∑n=0∞(−1)n(2n+1)!sin1=1sin1−13!sin1+15!sin1−17!sin1+19!sin1−⋯=1
∑n=0∞2ee2+11(2n)!=2ee2+1+2e2!(e2+1)+2e4!(e2+1)+2e6!(e2+1)+2e8!(e2+1)+⋯=1
∑n=0∞(−1)n(2n)!cos1=1cos1−12!cos1+14!cos1−16!cos1+18!cos1−⋯=1
∑n=0∞1n!e=1e+1e+12e+16e+124e+1120e+⋯=1
∑n=0∞(−1)nn!e=e−e+e2−e6+e24−e120+⋯=1
∑n=0∞−(−1)nπ2n+1(2n+1)!=−1+π33!−π55!+π77!−π99!+⋯=1
∑n=0∞(−1)nπ2n(2n)!22n=1−π22!22+π44!24−π66!26+π88!28−⋯=1
∑n=0∞(−1)nπ2n+1(2n+1)!24n+1.5=1−π33!25.5+π55!29.5−π77!213.5+π99!217.5−⋯=1
∑n=0∞(−1)nπ2n(2n)!24n−12=1−π22!23.5+π44!27.5−π66!211.5+π88!215.5−⋯=1
∑n=0∞−(iπ)nn!=−1−iπ+π22+iπ36−π424−iπ5120+⋯=1
∑n=0∞2in1+i=21+i+2i1+i−21+i−2i1+i+21+i+⋯=1
∑n=0∞2i−n1−i=21−i−2i1−i−21−i+2i1−i+21−i−⋯=1